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I n  two previous papers (Proudman 1970; Dowden 1972) it has been shown that 
some of the phenomena of turbulence a t  high Reynolds numbers can be modelled 
by a suitable chosen member of the class of v-fluids. These are non-Newtonian 
fluids all of whose properties depend only on a single dimensional constant 
whose dimensions are those of viscosity. The purpose of this paper is to con- 
struct an equation to model homogeneous turbulence in the presence of a spatially 
constant rate of deformation in the limit of infinite Reynolds number. 

The equation employed is that of a doubly degenerate third-order v-fluid 
(in Proudman's classification) in the limit v -+ 0. In  such a fluid the stress tensor 
S is governed by an equation of the form 

A88 + B&"2 + CU'SS + DU'S2 + Eu"S' = 0,  

where A ,  B, . . . , E are isotropic tensor constants of the fluid, u' is the total rate 
of deformation tensor and dots denote time derivatives. A list of properties 
required of the equation and its solution is proposed, and the most general form 
of A ,  B, . . . , E is given consistent with these requirements. Computed solutions 
of this equation are compared with the results of experiments on homogeneous 
turbulence, and are found to agree well with them. 

1. Introduction 
It has been suggested (Proudman 1970) that some properties of turbulence 

can be described by means of a suitably chosen member of a class of non-New- 
tonian fluids, v-fluids, all of whose properties depend on a single dimensional 
parameter with the dimensions of viscosity. This idea, and Proudman's develop- 
ment of it, has a generality which is not shared by most other models of turbulence. 
In  particular, it concentrates attention on the most fundamental aspects of 
turbulence such as energy dissipation, dependence on viscosity, and the negative 
definiteness of the Reynolds stress tensor; it also provides a framework that can 
include both homogeneous and inhomogeneous turbulence. The theory is not 
necessarily incompatible with more detailed explanations of various averaged 
quantities in mechanistic terms but these explanations take a secondary place. 

It is the degree of generality which forms the strength of the theory and entitles 
it to serious consideration. The main disadvantage of it, however, is illustrated 
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by the particular v-fluid which Proudman put forward as the simplest that could 
be considered as a model for turbulence. This v-fluid contains a large number of 
constants whose values are not known. 

A consideration of the relaxation of stress as a model for the decay of homo- 
geneous turbulence (Dowden 1972), however, showed that, if the model were to 
have a number of very simple properties consistent with the behaviour of homo- 
geneous turbulence in the absence of a mean velocity gradient, the nine coeffi- 
cients relevant to the problem at infinite Reynolds number must be expressible in 
terms of only two constants with significance in the solution, and another two with 
no significance. The substantial simplification of the equation governing the stress 
that this result implies leads one to suspect that similar simple requirements in 
the context of more general problems may also lead to a similar reduction in the 
number of unknown constants. It is the purpose of this paper to find an appro- 
priate set of requirements when the stress is homogeneous and the rate of de- 
formation tensor is a function of time only, and then to state the consequences 
of these requirements. 

An nth-order v-fluid is one in which the added stress tensor S (taking the density 
of the fluid to be unity so that kinematic definitions are adopted everywhere), at  
a point where the velocity is u, is governed by an equation of the form 

=f(..E, " " - 9  '3-9 = Dtn-1, Y 

DnS Du Dnu DX 
Dt 

where f is a function which is regular at  the origin of the space of all the arguments 
shown and all their space derivatives of any order. In  the v-fluid model of turbu- 
lence -S is used to describe the Reynolds stress tensor (-GI, where v is 
the tubulent fluctuation of the velocity field. Proudman concluded that the prin- 
ciple of Galilean invariance must apply to the v-fluid model of turbulence and 
consequently that 

u, Du/Dt, . . . , Dnu/Dtn 

must not occur explicitly in the function, although their space derivatives may. 
Further, he required that S = 0 should be a possible solution. 

The equations which govern fluids of the first and second orders possess solu- 
tions in the limit as v -+ 0 which are not acceptable as models for the decay of 
homogeneous turbulence, while the equation of a third-order v-fluid is of the form 

s = v-3p!X4 + v-2(p$P& +p;ufS3) 

+ v - 1 ( ~ ~ S ~ ' p ~ Q ~ + ~ ~ S ~ S W f p ~ S S ' 2 + p ~ U 1 = S 2 + p ~ u ' S 2 + ~ ~ ~ U f S Q )  + O ( V O ) ,  

3 where dots denote time derivatives, primes denote space derivatives, p!, . . . ,pl0 
are isotropic tensor constants and u' is the rate of deformation tensor with 

As in the case of first- and second-order v-fluids a limiting equation as v + 0 
is obtained which is, in general, much too simple to describe the behaviour of 
turbulence. A third-order fluid, however, differs from first- and second-order 
fluids in that if p i ,  p i  and p i  are all zero a limiting equation results which, as 

= au,/ax,. 
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Proudman has shown, is sufficiently general to describe a t  least some of the 
properties of turbulence. If u' and S depend only on time this limiting equation ,is 

Dowden showed that pi  and pg must have a special form if the solution of (1.1) 
is to have the following properties when u' = 0. 

(i) If S is initially real and positive definite and 6- < 0,  where CT = tr(S), 
then 8 continues to have these properties at all subsequent times. 

(ii) CT tends to zero as t tends to infinity and the asymptotic stress is isotropic 
when condition (i) holds. 

(iii) The differential structure of the equation is such that G is always deter- 
mined by the equation. 

The first two terms of (1 .1)  must then have the form 

where 

and a,+3a4 * 0 (n > r > -1) .  (1.3) 

Since the principal purpose of this investigation is to find v-fluids which are 
suitable as models of turbulence, this form for the first two terms will be used 
here. The first part of (1.3) implies that, if (1.2) is to vanish, the equation which 
results is equivalent to 

c, = 0. 

If, therefore, (1.2) is taken as the first two terms of (1.1) it  follows that the full 
equation can be rewritten as 

aJ +a, tr (Z) 1 = 0,  (1.4) 

where Z = xa +P(u', U', s, S) 

and the function F is of the same form as the last three terms on the left-hand 
side of (1.1). 

Write 
u' = e+w, 

where e is the symmetric and w the antisymmetric part of u'; the components of 
w are then related to the vorticity by 

and e is the rate of strain tensor. 
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With this notation the general form of X is 

+bleatr(eS)+b,etr(eS2)+b3e2a2+b,e2tr(52) 
+b,(eS+Se) tr (eS) +b,(e2S+Se2) e+b,(e2S2+S2e2) 

+ b,S2 tr ( e 2 )  + b,Sa tr  (e2) + bloX tr (e2S) 

-tI{bll tr (e2) tr (S2) + bl,a2 tr (e2)  + bl3a tr (e2S) + b14 tr (e2S2) + b15 tr (eS)2) 

-i- b,Sc t r  (w2) + b17 S tr (w2X) + b18X2 tr (wz) + b19wzr2 

+ b2,u2 tr (S2) + bzlc+'w2 +w2S)  + b,,(S2w2 + w2S2) 

-t I {bZ3a  tr (Sw2) + b2,a2 tr ( w 2 )  + b25 tr  (S2)  tr (w2)  + b,, tr  (S2w2)} 

+I(b27 tr (S2ew) + bZBc tr (Sew))  + b ,  S tr (Sew) 

-t b,, tr ( e S )  (Sw - wS) + b3,  sew - we#) + b,,a(eSw - wSe) 

+ b,,a(eoS - S u e )  + b,, tr (S2)  (ew - we) + b3,a2(ew - we) 

+ b,(S2ew - we#') + b,(S2we - ewS2) + b,(eS2w - wS2e) 

+ b,, a2b + b40 d t r  (8,) + b,, a(dS + Si) + b,, S tr (6s) 
+ b4,(CS2 + X 2 d )  + I{b,,a tr (is) + b,, tr (isz)} 

+b,,&tr(eS)+b,,Icitr(eX) +b,,Str(e&) +b,,Iatr(e&) 

+b,,ltr (eS&)-tb,,e~&+b5,etr(S&)+b5,~(eS+Se) 
+ b,, a(e& + Be) + b,,(e&S+ S&e) + b,,(eX& + &Se) 

+ b,,a(SLJ - 6s) + b,,(S2LJ - 6s') 

+ b59 c i ( S ~  - US)  + beoc(&w - US) + b,,(S&u - US&) 

+ b 6 , ( f i S o - d & )  -t-b,,(&'wS-Sd) +b6, I t r (&d) .  (1.5) 

There are a number of additional terms of the correct form (Se2S for example) 
but the results obtained by Spencer & Rivlin (1962) show that all such extra 
terms can be expressed as linear combinations of quantities which already appear 
in the list, and that this list is minimal can be shown from results obtained by 
Smith (1965). 

As well as (1.4) there are the symmetric and antisymmetric parts of the gradient 
of the dynamical equation, and the equation of continuity tr(u') = 0. In  the 
limit as v + 0 the dynamical equation becomes 

DU{ ap asij 
-- - -- +F,-- 
Dt ax, ax, 

where is the body force applied to the system. When S,  ZL' and F' (where F' 
has (i,j)th component 8Fi/axj) are homogeneous in space, the symmetric part 
of the gradient of the dynamical equation is 

d+e2+w2 = - p"+*(P'+F'T), (1.6) 
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where the (i, j ) th  component of the symmetric tensor p” is aaplax,axj. The anti- 
symmetric part is 

and the equation of continuity implies that 

h+ew+we = +(F’-F’T) (1.7) 

tr(e) = 0. 

Thus the problem studied is governed by (1.6) and 

x = 0. 

The investigation in the absence of a mean velocity field was conducted by 
imposing the three restrictions quoted earlier on the family of fluids to be in- 
vestigated; only those which satisfied the restrictions were then considered as 
possible models for turbulence. The first of these restrictions was derived from 
the Navier-Stokes equation and the definition of the Reynolds stress tensor, 
while the second was suggested by experimental evidence. The third was neces- 
sary to exclude from consideration members of the family whose differential 
structure was such that they could not describe the energy of homogeneous 
turbulence under some circumstances - for example, when the turbulence 
was isotropic. This method of proposing appropriate restrictions on the family 
of u-fluids to be studied and then investigating those members of it which satisfy 
them is very convenient as it gives rise to definite statements about v-fluids 
themselves, as well as directing attention to members of the family most likely 
to be useful in the study of turbulence. For that reason it will be adopted here. 

In  the present case little further can be stated in the way of restrictions 
suggested by theoretical deductions apart from the appropriate generaliza- 
tions of the first of those used before. There is, however, an additional restriction 
of the same kind as the third. It will be noticed that the differential structure of 
(1.8) is the same in general whatever the values of e and w ;  that is to say, it takes 
the form of a system of algebraic equations for ii and f i  - & $ I .  There may, how- 
ever, be particular values of u’ for which this algebraic system has more than 
one solution, or no solution. Any values of e and w and of S and 3 (provided that 
S is positive definite and & + 2 tr (eS) < 0) must be regarded as acceptable since 
restrictions on initial conditions deduced from special properties of v-fluids and 
not from ideas about turbulence are contrary to the intended generality of the 
model. Consequently, the values of the constants b,, . . . , b,, must be such that the 
equation is always soluble for the highest derivatives. Even a choice of constants 
for which there is always a unique limit as such special values are approached 
(by varying e and w )  is not acceptable since the equation as it stands, not a 
manipulated form, should be adequate for all u’. Further, when v is small but 
non-zero the initial behaviour of the solution will depend on v for these values of 
e and w in a way that is qualitatively different from the way in which it will 
depend for other values. 

A preliminary investigation based only on these restrictions shows that 
although they limit the family of v-fluids to be studied to some extent (particularly 
as to acceptable values of bd8, . . . , be4) the size of the family is still prohibitively 
large. While such a large degree of freedom in the choice of models may be 
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desirable or perhaps even essential it  would seem more appropriate to impose 
further restrictions based on experimental evidence. Unfortunately direct 
evidence of this kind is somewhat scanty and often inconclusive when the results 
of different sets of experiments on the same phenomenon are compared, so that it 
is probably more useful t o  base any new restriction on indirect evidence (either 
experimental or theoretical) but to choose it so that it has some fairly simple 
interpretation in terms of the general properties of turbulence. In  this way 
results can be deduced from the study of the appropriate family of v-fluids 
which can be compared with experiments and either confirmed or disproved. 
In either case further understanding of the nature of turbulence will have been 
gained. 

Such a restriction is introduced here, and is the fourth in the list which follows. 
It is suggested partly by the linearity in u‘ of the equation for the turbulent 
velocity perturbations, but a full discussion of it is postponed to the next section. 
Two substitutions which are convenient in listing these restrictions are the 

(1.9) 
following: 

When (1.8) is expressed in terms of T and x it becomes a system of first-order 
equations for these two quantities. If a v-fluid is used as a model for homogeneous 
turbulence at infinite Reynolds number z has a particularly simple interpreta- 
tion since +vx is the rate of dissipation of energy by the action of viscosity. 

The values of b,, . . . , b,, given in this paper are those for which the equation and 
its solutions satisfy the following restrictions. 

Restriction (i). If X is positive definite and z > 0 initially, these conditions 
remain true subsequently. 

Restriction (ii). The equation must be soluble for i and T whenever Xis positive 
definite and x > 0. 

Restriction (iii). If u’ is identically zero, (r tends to zero as t tends to infinity, 
and the asymptotic stress is isotropic. 

Restriction (iv). r f  and k are given by expressions which are linear in the com- 
ponents of u‘. 

The need for (i) follows at once if - X is to model the Reynolds stress tensor 
and if the energy is to satisfy the thermodynamic condition. Restriction (iii) 
ensures that the model has the properties already demanded of it when d is 
zero. 

vT = S-QvI, vz = -3--2tr(eS). 

2. The fourth restriction 
Since the limit v -f 0 is an unattainable ideal in the flow of a real fluid, it  is 

helpful to have a measure of the circumstances under which this limit in the Y- 
fluid model might be used as an approximation to a turbulent flow. If 

R = (r/vz, E = x/[tr (u’u’T)]* 

and (as here) we are not primarily concerned with the case E % 1,  the limit v --f 0 
in the equation of the v-fluid is a satisfactory approximation if 

min{R, RE} % 1. 
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Now the length scale of the dissipative turbulent eddies is (v/z)* while the length 
scale of convective rotation and distortion due to the mean velocity field is 

If e is of order one this is the same as the length scale of the energy-containing 
eddies, so that the neglect of all but the leading terms in the equation of the u- 
fluid is equivalent to assuming that the two different length scales are of different 
orders of magnitude. This is consistent with Taylor's (1938) observation that a 
separation occurs between the length scales of the dissipative and energy- 
containing eddies at  high Reynolds numbers. The same interpretation is possible 
when E 9 1, but the case E < 1 can be obtained in two very different ways. If it 
is achieved by allowing the magnitude of u' to increase indefinitely while holding 
everything else fixed, the condition RE B I is ultimately violated and the turbu- 
lence is best described by rapid-distortion theory (Batchelor & Proudman 
1954). If on the other hand z is decreased but the magnitude of u' is held fixed, 
a situation occurs in which the turbulence has the special form demanded by the 
u-fluid theory but in which the dissipative eddies are very weak (although their 
length scales are still small). The mechanics of the development of the turbulence 
are dominated by the convective terms in the equation of motion, but with the 
nonlinear terms of greater importance than the viscous terms. No evidence, 
either experimental or theoretical, appears to be available about the behaviour 
of turbulence under these condit'ions, although it is reasonable to assume that the 
state is unstable. 

In  turbulence in which the length scales of the dissipative eddies are small 
compared with those of the energy-containing eddies, the time scales similarly 
differ by an order of magnitude. It is possible therefore to consider a change in 
the mean velocity field (described by u') which occurs on a time scale that is 
short compared with the time scale of the energy-containing eddies but long 
compared with that of the dissipative eddies, Equations (1.6) and (1.7) show 
that this is possible in principle by applying an appropriate body force, which will 
not necessarily be irrotational but whose gradient in space is a function of time 
only. The energy-containing eddies cannot be affected immediately since their 
own time scale is too long and there is no time scale associated with the body force 
other than that of its application, while according to the hypothesis of universal 
equilibrium (Batchelor 1953, p. 114) the behaviour of the dissipative eddies is 
uniquely determined statistically by g, z and v. Even dependence on T can be 
included, as may possibly be implied by Townsend's (1954) experiments. The 
change in u' can directly affect eddies whose time scale lies between the two ex- 
tremes, but if we assume that the dynamical importance of this is negligible a t  
infinite Reynolds number the effect can be ignored. Now because of the differen- 
tial structure of the v-fluid model, g, z and T are all continuous quantities on the 
time scale of the energy-containing eddies, so that we would not expect an im- 
mediate variation (on the time scale of the variation in d) in any quantity that is 
the average of products of components of the velocity, their integrals and 
derivatives. On this assumption the u-fluid models of such terms will not depend 
on u, nor by a similar argument, on u'. Further, they will not depend on i or 5!', 

, 
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which are given by the constitutive equation of the v-fluid in terms of u' and 
hence would, implicitly, give models that could vary on this intermediate time 
scale. While these arguments are not conclusive, they suggest that it may be of 
some interest to consider models of such quantities that depend only on z, c 
and the components of T; a somewhat similar idea was used by Lumley (1970) 
to construct a differential equation for the Reynolds stress tensor. 

Now the Navier-Stokes equations for a fluid of unit density moving with mean 
velocity u in the presence of a body force F show that the turbulent variat,ions 
v from the mean velocity satisfy 

- 
~i+vjui,j+u~vi,j+(vivj-vivj),j = --'cu 9% '+YVi,jj, v j , j  = 0,  (2.1) 

where the overbar indicates an average, w is the pressure fluctuation and sub- 
scripts preceded by a comma indicate differentiation. If the turbulence is 
homogeneous, so that the space gradients of all averaged quantities other than u 
and the pressure p vanish, (2.1) can be used to show the following results: 

and 

where 

and 

(2 .5)  

.li+ut2 = -p" + F', tr (u') = 0,  (2.6) 

where p" = { P , ~ ~ }  and P' = {q,J. The equations are written on the assumption 
that F and u depend only on time. Writing as before 

UT ZE X - i e I  

(2.2) and (2.4) become first-order equations for T and x respectively in terms of 2 
and RO, . . . , R3. The definitions of these latter quantities are given in (2.5) and 
they are of the type described earlier, so that models for them in terms of quanti- 
ties defined in the v-fluid model will, by the argument given above, depend only 
on v, x and T. On dimensional grounds c can be removed from this list, while Ro is 
dimensionless, 2, R1 and R2 are proportional to x ,  and R3 is proportional to 22. 

Consequently (2.2) and (2 .4)  become equations of the form 

P = zFl(T) +F2(u', T) 
and i = z2f,(T) +xf&c', T), 
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where F, and F, are isotropic tensor functions of their arguments and f, and f2 
are scalar functions; F, and f, are linear in the components of u’. 

It is this which suggests the form of the fourth restriction given in the previous 
section. 

3. Consequences of the restrictions 
If (1.4) and its solutions are to satisfy the restrictions listed a t  the end of 3 I ,  

the values of b,, . . . , b,, must be chosen to be compatible with these constraints. 
It is possible to investigate these consequences in three stages, corresponding to 
three distinct situations of physical interest. In  the Grst e is constant with w zero, 
in the second w is constant but e is zero, and in the third both e and w are functions 
of time. This investigation is reasonably straightforward but somewhat lengthy, 
and an outline of the algebra can be found in a report which may be obtained 
from the author. The conclusion is that Z must have the form 

s{cz(++ 2 tr (eS)) /dt  + 2[tr (eB) + 2(tr ( e W )  A, - tr  (Sew) A2) (n - r ) / ( r  + I ) ]  

x (k - r - i) / (n + I)} - {B - +(6 + 2 tr (eS)) I + [h,(eX + Xe) + A2(Sw - w&1 
x (n - r ) / ( r  + I)} (6 + 2 tr (ei3)) (r + 2) / (n  + 1)  - &I(6+2tr(eX))2 ( r + 2 ) / ( r +  1)  

+ b,,{r(& - of?) - (Sw - wi3) (6 + 2 tr (eS)) (n + l ) / ( r  + 1) + [h,(r(Seo - weS 

+eSw-wSe)-2(Xw-wX) t r (e8))  +h,r(Sw2+w2X- ZoSw)] (n - r ) / ( r+  I)] 

+ b,,l{tr (8wS) + [tr (S2ew) A, + (tr (S2w2) - tr (XwXw)) A2] (n  - r ) / ( r  + 1)}, (3.1) 

where b60, b64, k, A,, A,, n and r are constants such that 

! (3.2) 
b,,b,, = (k - r - I )  (A, - ( r  + I)/(% - Y)> = 0 

and n > r >  -1. 1 
I n  fact b,, and b,, have no significance in the solutions of (1.4), so that these solu- 
tions depend only on four parameters, n, r ,  A, and either A, or k. 

A further condition that must be satisfied if the v-fluid is to model turbulence 
is 

A, < ( r  + - r ) ;  (3.3) 

this is not a consequence of restrictions (i)-(iv) but follows from the form of RO, 
defined in (2.5). 

The relative complexity of (3.1) obscures the remarkable simplicity of the re- 
sult which becomes apparent on using the substitutions (1.9) for S and 6. Equa- 
tion ( I  -4) then reduces to the following pair of equations for z and T: 

T+{A,(eT +Te-$tr(eT)I+Qe-2tr (eT)T)+h,(Tw-wT)+zT} 

x (n - r ) / ( r+  1) = 0 (3.4) 

In  general, it is necessary to solve these equations numerically; however, 
when w is constant and e is zero, an explicit solution exists for an initial-value 
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problem posed a t  t = 0. Distinguishing initial values by the subscript zero, the 
solution is 

(3.6) -i 2 = z o / { l + z o t / ( r + l ) } ,  0. = (To/{l+zot/(r+1))7+1 

exp {A,  ot (n - ~ ) / ( r  + 1)) 17,exp { - A, ot(n - r ) / ( r  + I)} 
(1 +z,t/(r+ 1))n-r 

T =  and 

It appears from this that (T is unaffected by the superposition of a rigid-body 
rotation and that if A, is non-zero the amplitude of T decreases slowly according 
to a power law, but superimposed on this is an oscillatory pattern of behaviour 
in some of its components. This solution, in fact, implies that there is a co- 
ordinate system which rotates about the same axis as the fluid but at  A,(n - r) /  
( r  + 1) times the rate in which the stress appears to relax exactly as if the fluid 
and the co-ordinate system were both at rest. 

4. Comparison with experimental results 
Solutions of (1.9), (3.4) and (3.5) have been calculated numerically for direct 

comparison with the results obtained in a number of experiments on the be- 
haviour of homogeneous turbulence in the presence of a mean velocity gradient. 
The experiments are of two types. First are the experiments on turbulence in 
the presence of a plane strain carried out by Townsend (1954), Mar6chal(l967) 
and Tucker & Reynolds (1968). The second set of experiments consists of those 
of Rose (1966) and Champagne, Harris & Corrsin (1  970) on the effect of a uniform 
shear. Some of the parameters of these experiments are given in table 1. 

Type u’ (s-l)? E 

Townsend 1954 Plane strain -uil = ui2 = 9.4 0.9 
Markcha1 1967 Plane strain -uil = ui, = 18.9 0.5 
Tucker & Reynolds 1968 Plane strain -uil = u& = 4.45 2.1 
Rose 1966 Uniform shear u:, = 13.6 3.1 
Champagne et al. 1970 Uniform shear u;, = 12.9 0.8 
Traugott 1958 Rigid rotation 4, = -uh = 209 0-4 

t The remaining components of U‘ are zero. 

TABLE 1 

Grid 
Rey- 
nold’s 

R RE no. 

230 210 12000 
640 320 20000 
400 840 12000 
400 1240 9000 
950 760 17000 
280 110 - 

A preliminary set of calculations showed that it is not possible to obtain any- 
thing approaching numerical agreement with the plane strain experiments for 
any values of n, r and Ic if 

A, = ( r +  l ) / ( n - r ) ,  

and so all further calculations were carried out with 
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leaving A, as a parameter to be chosen arbitrarily subject to (3.3). The value 
r = 0 was always found to give rather better agreement of the curve for the turbu- 
lent energy with the experimental points, a result which can be seen in figure 6 
of Tucker & Reynolds’ paper. The curves shown here have all been computed 
with this value, and with n = 0-33, which follows from the figure for n - r sug- 
gested by the experimental evidence on the decay of homogeneous turbulence in 
the absence of a mean velocity gradient (Dowden 1972). Attempts at varying 
this value for n showed that, while agreement with some experiments might be 
somewhat improved, that for others was usually made worse. It is possible that 
a detailed study may reveal a better value but this one is quite adequate for our 
present purpose. The value A, = 0-7 was also obtained by trial and error; again, 
it may be possible to  improve on it somewhat, but the agreement of the solutions 
calculated from these values with the experimental observations is very encour- 
aging as can be seen from figure 1. The initial values used in the calculation were 
chosen to give the best possible agreement in the middle section of the wind tun- 
nel but it will be noticed that towards the end in all cases there are discrepancies. 
Lumley has pointed out that the results of the experiments differ substantially 
from each other and has suggested that these differences may be due to end effects. 
It can be seen from the curves given here that some such explanation is again 
necessary but that the agreement is substantially better than that produced by 
Lumley’s model, which (though similar) was somewhat simpler than the one 
presented here. 

With values for n, r and A, known i t  is possible to compute solutions for com- 
parison with the uniform shear experiments. It was found that they were 
relatively insensitive on this time scale to the value chosen for A,, but the value 
finally chosen, for reasons to be discussed Iater, was A, = 0.978, and the results 
of the calculations are shown in figure 2. Once again the agreement with the 
experimental results is good, especially with the experiments of Champagne 
et al. The agreement with Rose’s observations is less satisfactory, particularly 
for the energy and cross-correlation terms. This may be due to the fact that, 
although the observations shown were taken on the centre-line of the tunnel, 
there was substantial variation in the cross-correlation term across the tunnel. 
The range of variation in the central region of the tunnel is also shown, and it 
can be seen that the computed solution is compatible with it. 

One solution of each type was computed over a much greater period of time 
than that covered by the experiments to illustrate the asymptotic behaviour of 
the solutions, and the results are shown in figures 3(a)  and ( b ) .  It is quite clear 
from this that the time scale of the experiments in all cases was far too short to 
support or contradict these predictions. What effect a finite Reynolds number 
may have over such long periods of time is also an open question. However the 
predictions are as follows. 

In  plane strain an asymptotic structure is attained but the energy of the 
turbulence increases without limit. 

In  uniform shear the asymptotic behaviour depends critically on the value of 
A,. For A, less than 0-978 the behaviour is qualitatively similar to that for plane 
strain; for A, greater than this value the energy of the turbulence has an overall 
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FIGURE 1. Computed solutions of (5.3) compared with observations of the effect of a plane 
strain on homogeneous turbulence. Values of constants in the equation used in the calcula- 
tion were r = 0, n = 0-33, A, = 0.7 and A, = 0.978. Observations: x ,  u/u0; +, TS3; 
0, K ,  3 (T,,-Taa)/(Tll+TZ,+~).  (a) Townsend (1954, 1 in. grid). ( b )  Mar6chal (1967; 
the values for u/uo have been reconstructed on the assumption that T33 z 0). (c) Tucker 
&Reynolds (1968). 

tendency to decrease while oscillations (with a period of the order of 1 s in the 
case studied) are superimposed on it and on all the components of the stress 
tensor, and the cross-correlation tends to zero; for A, with the value given here, 
both an equilibrium structure and a non-zero equilibrium value for the turbulent 
energy are attained but with a zero value which is reached very slowly for the 
cross-correlation. It is remarkable that the equilibrium value is not that suggested 
by the experiment, and indeed this latter value is seen to be only a local minimum 
with a time scale which happens to be of the same order of magnitude as the time 
scale of the experiment itself. From (3.4) and (3.5) it  can be seen that solutions 
for the family of mean flows in which 

ew+we = 0 

can be expressed in terms of the parameter 

A,Jtr (d)/tr  ( e z ) )J+  

for given values of n, r ,  A, and e. Uniform shear occurs when this parameter is 
equal to A, and is the special case which separates flows with closed streamlines 
from flows with open streamlines. From (1.9) equilibrium of the energy with a 
non-zero value can only occur if a steady state is possible in which 

z+2tr(eZ') = 0. 
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FIGURE 2. Computed solutions of (5.3) compared with observations of the effect of a uni- 
form shear on homogeneous turbulence. The constants have the same values ae for figure 1. 
Observations: 0, T,,; +, Tsa; 0, T12. (a)  Rose (1966). The range of variation in T,, across 
the central portion of the tunnel is shown by error bars. Observations: x ,  a/c~~. ( b )  
Champagne et al. (1970). Observations: x , a/2r0. 
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FIGURE 3. Computed solutions of (5.3) calculated over longerperiods of time to show asymp- 
totic behaviour. (a )  Data as for figure l ( c )  (plane strain). ( b )  Data as for figure 2 ( b )  (uni- 
form shear). (c) Data &s for Traugott (1958; rigid rotation). 

The calculated solutions suggest that T,, (in the co-ordinate system indicated in 
table 1)  tends to its asymptotic value more slowly than u, T,, or T22. If this is so 
then (3.4) can be used to find T on the assumption that T12 is non-zero. For 
consistency with (3.5), however, the asymptotic value of T12 calculated in this 
way must itself be zero and this gives rise to the condition 

A; tr (w2)  + ( A t  + &Il) tr (e2) = 0. 

This relation therefore gives the ratio of the magnitudes of w and e a t  which a 
change in the character of the solutions occurs. There is no clearcut reason for 
preferring one value of this ratio to any other, but the only value which has special 
physical significance occurs when 

tr  ( w 2 )  + tr (e2) = 0,  

as pointed out earlier. This makes it plausible to choose A, and A, so that 

A; = A: + #A,, 

and it is for this reason that a value of 0.978 was chosen for A2 in the calculated 
solutions. 

Experimental evidence on the behaviour of homogeneous turbulence in the 
presence of (for example) a rigid-body rotation would be of very great interest. 
This model predicts that in a stationary frame of reference the turbulent energy 
should decay as if no rotation were present, and that the asymptotic stress is 
isotropic, but that T has periodic fluctuations superimposed on this behaviour. 
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An experiment on the effect of a rigid-body rotation on turbulence was carried 
out by Traugott (1958). The turbulence he observed was almost isotropic and 
appeared to decay in much the same way as when no rotation was present, so that 
his observations support the predictions of (3.6). His apparatus however was 
axisymmetric (as well as rather short) and so his observations cannot be used to 
test predictions about the structure of S. The data for his experiments are in- 
cluded in table 1 and the solution for an anisotropic initial-value problem with 
these data is shown in figure 3 (c). 

5. Discussion 
The restrictions set out in 3 1 can be used to find the most general doubly de- 

generate v-fluid which satisfies them in the limit as v -+ 0. Although this member 
of the family depends on remarkably few constants it is still possible to choose 
them so that all the direct experimental evidence is surprisingly well described, 
even though the asymptotic behaviour of the solutions is not always that which 
the experiments appear to imply. Although tests of the arguments employed 
in 0 2 to suggest our fourth restriction would be of interest in their own right this 
model depends only on the restriction itself and not directly on the arguments 
used to support it. Consequently, the main tests of the model must be the com- 
parison of its predictions in as wide a range of circumstances as possible with 
experimental results. The available evidence to date cannot be regarded as 
sufficient to provide a rigorous test of the model, however, and further experi- 
ments on, for example, the behaviour of homogeneous turbulence in the presence 
of a rigid-body rotation would be of great interest. 

Finally, it is perhaps advisable to point out that if (3.1) should prove to be in- 
adequate as a model of homogeneous turbulence in the light of further evidence, 
this would not necessarily invalidate the concept of the v-fluid model nor would 
it necessarily lead to the rejection of all doubly degenerate third-order models. 
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